大学物理 ›› 2022, Vol. 41 ›› Issue (10): 59-.doi: 10.16854 /j.cnki.1000-0712.210402

• 大学生园地 • 上一篇    下一篇

自转多方球的内部结构

罗昕睿,余聪   

  1. 中山大学 物理与天文学院,广东  珠海51908
  • 收稿日期:2021-08-25 修回日期:2022-02-21 出版日期:2022-10-22 发布日期:2022-10-26
  • 通讯作者: 余聪,E-mail: yucong@mail.sysu.edu.cn
  • 作者简介:罗昕睿(2000—),男,广东肇庆人,中山大学物理与天文学院物理学专业2019级本科生.
  • 基金资助:
    国家自然科学基金(11873103)资助

The internal structure of the rotational polytropes

LUO Xin-rui, YU Cong   

  1. School of Physics and Astronomy, SunYatSen University, Zhuhai, Guangdong 519082, China
  • Received:2021-08-25 Revised:2022-02-21 Online:2022-10-22 Published:2022-10-26

摘要: 本文将多方球内部的引力势能与自转带来的离心势能一并考虑进流体静力学平衡方程,并利用多方关系得到一个自转情形下可以描述恒星内部结构的微分方程,然后考虑自转较慢的情况,利用微扰展开和分离变量的方法进行近似求解,最后讨论自转多方球模型的外边界、内部密度分布及质量半径关系.

关键词: 多方球, 自转, 内部结构

Abstract: Polytrope is often used to describe the internal structure of gaseous stars. For a stationary polytropes, the Lane-Emden equation can be obtained bycombing the hydrostatic equilibrium equation with the polytropic equation, and the internal structure of the star can be determined approximately by solving the equation. But for the more general cases, the star is in rotation. Hence the influence of rotation on the outer boundary and inner structure of the polytrope model is particularly important. This paper firstly substitutes the rotation into the hydrostatic equilibrium equation and combines the polytropic equation to obtain a differential equation that can describe the internal structure of the star in the case of rotation, and then considers the case of slow rotation, and uses the method of perturbation expansion and separation of variables to obtain a approximated solution. Finally, the outer boundary, internal density distribution and the relationship of mass and radius of the rotation polytrope are discussed through the approximated solution.

Key words: polytrope, rotation, internal structure